
CSC 383, Fall 2011, Assignment 4

CSC 383, Sections 401 and 410
Fall, 2011

Assignment 4
Due 11:59pm CT, Wednesday, September 28th

Requirements. You are to write a class called Order that contains a set of
generic static methods for computing and returning the th smallest item in a
collection, where . For example, if is 0, the method should return smallest
item in the collection; if is 4, it should return the fifth smallest item.

Each method will be generic in the least restrictive way. I will explain this in class
and provide a pseudocoded algorithm. I will also provide a test program.

Your class will contain three methods:

1. getByOrder: This will be a public method with the signature:

public static <T extends Comparable<? super T>>

T getByOrder(Collection<T> collection, int k)

This method, when called with a collection as its first argument and an
integer as its second, returns the th item in the natural ordering of the
elements in the collection.

2. getByOrderOnArrayList: This will be a private method with the signature:

 private static <T extends Comparable<? super T>>

T getByOrderOnArrayList(ArrayList<T> arrayList, int k)

This method, when called with an array list as its first argument and an
integer as its second, returns the th item in the natural ordering of the
elements in the array list.

3. partitionArrayList: This will be a private method with the signature:

 public static <T extends Comparable<? super T>>

int partitionArrayList(ArrayList<T> arrayList)

This method, when called with an array list, selects a pivot element in it,
partitions the array list so that elements less than the pivot are in the left
part of the array list, elements greater than the pivot are in the right part,
and the pivot is between them. It returns the position of the pivot in the
modified array list.

CSC 383, Fall 2011, Assignment 4

Pseudocode for each method

getByOrder(collection, k) {

 if k is not in the correct range {

 throw a no such element exception

 }

 copy the collection to an array list

 call getByOrderOnArrayList(array list, k)

}

getByOrderOnArrayList(array list, k) {

 pivot position = partitionArrayList(array list)

 if pivot position == k {

 return element at position k of array list

 }

 else if pivot position < k {

 create a sublist from the elements in array list

 from pivot position + 1 to the end

 return getByOrderOnArrayList(sublist,

 k-pivot position-1)

 }

 else { // pivot position > k

 create a sublist from the elements in array list

 from 0 to pivot position - 1

 return getByOrderOnArrayList(sublist, k)

 }

}

partitionArrayList(array list) {

 set pivot to last element in the array list

 remove the last element from the array list

 create an empty array list called lesser values

 create an empty array list called greater values

 for each element in the array list {

 if the element is less than the pivot {

 add it to lesser values

 }

 else {

 add it to greater values

 }

 }

 set pivot position to the size of the lesser values list

 clear the original array list

 add all of the elements in lesser values to array list

 add the pivot to the array list

 add all of the elements in greater values to array list

CSC 383, Fall 2011, Assignment 4

 return the pivot position

}

Submit a source file called Order.java.

Grading rubric: This assignment is worth 30 points, with points assigned as
follows:

- Variable and method names descriptive and mnemonic (4 points)
- Comment block with information specified (4 points)
- The test program, using your Order class, runs correctly to completion and

prints correct output (20 points)
- Code is properly indented (2 points)

Beyond the above rubric, 2 points will be deducted for each missed requirement.
If I say to do something a certain way, do it that way.

